CHEMICAL ENGINEERING 5103-1 (6103-1) BIOCHEMICAL ENGINEERING

Spring Semester, 2016 COURSE SYLLABUS

INSTRUCTOR:	PROFESSOR ED TRUJILLO 3290H MEB, 801.581.4460, Office hours: Open door policy, 10:30-11:30 AM, MWF Email: <u>edward.trujillo@utah.edu</u> Homepage: <u>http://www.che.utah.edu/~trujillo</u>		
TEACHING ASSISTANTS:	Melissa Puga, <u>melissa.puga@utah.edu</u> Office: ICC room, 2285 MEB Office Hours: 9:30-10:30 AM, Tuesdays		
	Gray Bertelsen, <u>gray.bertelsen@gmail.com</u> Office: ICC room, 2285 MEB Office Hours: 11:30-12:30 PM, Tuesdays		
	Brad Dallin, <u>brad.dallin@gmail.com</u> Office: ICC room, 2285 MEB Office Hours: 3:30-4:30 PM, Tuesdays		
SCHEDULE:	MWF 9:40 AM-10:30 AM, WEB L105		
CO-REQUISITES: or PRE-REQUISITES	CHEN 3553 - Chemical Reaction Engineering (C- or better) CHEN 3603 - Mass Transfer, or equivalent courses (C- or better) Recommended prerequisites or co-requisites are BIOL 2020 - Cell Biology, or CHEM 3510-Biological Chemistry,		
DESCRIPTION:	Introductory course to biochemical engineering and bioprocessing. Cell biology, enzyme kinetics, bioreactors, bioseparations and bioprocessing will be discussed in relation to the medical, pharmaceutical, environmental and biochemical industries. Those taking CH EN 6103 will be required to write a term paper by the end of the semester.		
GRADING:	MID-TERM EXAM25%Homework15%Quizzes20%Participation in Class15%END-TERM EXAM25%		
TEXT:	Michael L. Shuler and Fikret Kargi, "Bioprocess Engineering: Basic Concepts ," Second Edition, Prentice Hall, New Jersey, 2002.		
REQUIRED EQUIPMENT:			

We will be using the U of U Clicker Technology for this class (ResponseCard NXT or ResponseWareTM by Turning Technologies). This will require you to purchase a "Clicker" from the bookstore (or use your smartphone or other mobile device) and purchase a license from Turning Technologies. Used clickers are

	available from the bookstore. These are the same clickers used in seminar. However, you must register your clicker for this course in CANVAS to receive credit. Registration instructions are given on the home page in CANVAS.	
HOMEWORK:	Homework is to be scanned and uploaded to CANVAS as one pdf formatted file before or on the day and time that it is due. Any associated files such as Excel files, MATLAB, or POLYMATH files should not be uploaded but the results of those programs should be contained in the homework file. Your last name and student ID number must be the first part of the filename. A scanner is available in the ICC and you may use the scanner in MEB 3271 (use access code 55).	
	Late Homework: No points will be deducted if th submitted within 15 minutes passed the deadline be deducted if submitted between 15 minutes and 3 he hours, 30% will be deducted until the solutions are Canvas. Once the solutions are posted, no points c the assignment.	at 10% will be ours. After 3 posted on
PARTICIPATION:	Participation in class will be monitored using your clicker responses to questions asked during class so no credit will be given if you forget your clicker. A point system will be established and normalized to give a final percentage for grading at the end of the semester. It is required that you bring your calculator and textbook to class as well.	
IMPORTANT DATES:	Last day to drop (delete) classes (no penalty) Last day to add classes without permission code Last day to withdraw from term length classes	January 22 January 17 March 4

Learning Objectives:

- 1. Demonstrate knowledge of DNA and its structure for simple organisms and for complex organisms and how DNA is altered by genetic engineering.
- 2. Recognize the difference between proteins and nucleic acids and be able to calculate the isoelectric point of a protein from the dissociation constants of the ionizing side groups
- 3. Calculate enzymatic rate constants from initial rate data and determine if inhibition is present and of what type.
- 4. Apply material balances to derive and use design equations for chemostats and bioreactors.
- 5. Employ analytical and numerical methods for solving single or coupled differential equations that arise from bioreactor material balances.
- 6. Determine the stoichiometric coefficients in a chemical reaction involving biomass.
- 7. Calculate the volumetric mass transfer coefficient in a bioreactor from gassing-in, gassingout experimental data and use that coefficient to determine the oxygen transfer requirements for cell growth.
- 8. Determine the osmotic pressure from protein concentrations and solvent characteristics using established correlations and theories.
- 9. Design a chromatographic column to separate a certain protein mixture.

- 10. Determine the time required for the separation of two proteins in an electrophoresis chamber using their electrophoretic mobilities.
- 11. Design a biological activated sludge process to process a certain waste water.
- 12. Demonstrate knowledge of contemporary biochemical engineering issues and controversies.

Topics Covered:

- Proteins, DNA, RNA, cell construction, nutrients, stoichiometry of cell growth
- Enzymes, enzyme kinetics, immobilized enzymes
- DNA replication, translation, transcription, genetic engineering, PCR
- Metabolic pathways, microbial reactions, respiration, fermentation
- Unstructured, nonsegregated cell growth models
- Continuous cultures, chemostats
- Bioreactors, non-ideal mixing, heat transfer, mass transfer, recycle
- Bioprocessing osmotic pressure, ultrafiltration, microfiltration, centrifugation, chromatography, electrophoresis
- Tissue engineering, virus growth
- Biological Waste Treatment

Software Used in Course:

- MATLAB
- POLYMATH
- EXCEL

BIOCHEMICAL ENGINEERING 5103-1

Spring Semester, 2016

TENTATIVE COURSE OUTLINE (1/10/2016)

Edition, Prentice Hall, New Jersey, 2002.				
Day	Subject	Reading Assignment		
Jan 11	Overview - Biochemical Engineering	Chapter 1		
Jan 13	Biological Basics	Chapter 2		
Jan 15	Cell Construction/Proteins/Nutrients	Chapter 2		
Jan 18	*********** MARTIN LUTHER KING/HUMAN RIGHTS	S DAY**************		
Jan 20	Enzymes, Polymath	Chapter 3		
Jan 22	Enzymes	Chapter 3		
Jan 25	Enzyme Kinetics	Chapter 3		
Jan 27	Homework #1 (Gray), MOVIE – "The Secret of Life"	1		
Jan 29	How Cells Work	Chapter 4		
Feb 1	DNA replication, translation, transcription	Chapter 4		
Feb 3	Homework #2 (Melissa) – Passive and Active Transport	Chapter 4		
Feb 5	Metabolic pathways, respiration	Chapter 5		
Feb 8	How Cells grow,	Chapter 6		
Feb 10	Homework #3 (Brad), Unstructured/structured kinetic models			
Feb 12	Unstructured/structured kinetic models	Chapter 6		
Feb 15	**************************************			
Feb 17	Homework #4 (Gray) Stoichiometry of microbial growth	Chapter 7		
Feb 19	MOVIE – "Playing God"	<u>F</u> /		
Feb 22	Recombinant DNA, genetic engineering	Chapter 8		
Feb 24	Homework #5 (Melissa), Bioreactors	Chapter 9		
Feb 26	Review	F 5		
Feb 29	######################################	#######################################		
March 2	Bioreactors	Chapter 9		
March 4	Bioreactors, Immobilized cell systems	Chapter 9		
March 7	Immobilized cell systems	Chapter 9		
March 9	Homework #6 (Brad) Scale-Up, Agitation,	Chapter 10		
March 11	Mass Transfer, Instrumentation	Chapter 10		
March 13-20	**************************************	******		
March 21	Determining volumetric mass transfer coefficient, k _{La}	Chapter 10		
March 23	Bioprocessing and product recovery, cell disruption	Chapter 11		
March 25	Osmotic Pressure	Chapter 11		
March 28	Filtration	Chapter 11		
March 30	Homework#7 (Gray), Microfiltration, Ultrafiltration	Chapter 11		
April 1	Centrifugation –	Chapter 11		
April 4	Chromatography	Chapter 11		
April 6	Homework #8 (Melissa), Chromatography	Chapter 11		
April 8	Chromatography			
April 11	Electrophoresis	Chapter 11		
April 13	Homework #9 (Brad), Electrophoresis	Chapter 11		
April 15	Mixed Cultures			
April 18	Biological Waste Treatment	Chapter 16		
April 20	Homework #10 (Gray), Biological Waste Treatment	Chapter 16		
April 22	Review	_		
April 25	######################################	#######################################		

Text: Michael L. Shuler and Fikret Kargi, **''Bioprocess Engineering: Basic Concepts**," Second Edition, Prentice Hall, New Jersey, 2002.

NO FINAL EXAMINATION

CHEMICAL ENGINEERING 5103-1 Spring Semester, 2016

References

Bailey, James E. and David F. Ollis, "Biochemical Engineering Fundamentals", *2nd ed.*, by, McGraw-Hill Publishers, 1986. Call no. TP248.3.B34 1986

Bronzino, Joseph D., Editor-in-Chief, "The Biomedical Engineering Handbook - Second Edition, Volumes I and II," CRC Press, Boca Raton, 1995. Call no. QT29.B615 1995

Cooper, Geoffrey M., "The Cell: A molecular approach," ASM Press, Washington, D.C., 1997. Call no. QH581.2. C66 1997

Cutlip, Michael B. and Mordechai Shacham, "Problem Solving in Chemical and Biochemical Engineering with POLYMATH, Excel, and MATLAB," 2nd ed., Prentice Hall International Series, 2008.

Harrison, Roger C., Paul Todd, Scott R. Rudge, and Demetri P. Petrides, "Bioseparations Science and Engineering, Oxford University Press, New York, 2003. Call no. TP248.25.S47 B55 2002

Lanza, Robert P.; Robert Langer and William L. Chick, Eds., "Principles of Tissue Engineering," R. G. Landes Company, Academic Press, San Diego, 1997. Call no. TP48.27.A53.p75 1997

Lee, James M., "Biochemical Engineering," Prentice-Hall, 1992. Call no. TP248.3.L44 1992

Nielsen, Jens and John Villadsen, "Bioreaction Engineering Principles," Plenum Press, New York, 1994. Call no. TP248.25.B55 N53 1994

Pollack, Gerald H., "Cells, Gels, and the Engines of Life," Ebner and Sons Publishers, Seattle, 2001. not in library

Shuler, Michael L and Fikret Kargi, "Bioprocess Engineering: Basic Concepts," Prentice-Hall Publishers, 2002.Call no. TP248.3.S58 2002

Stephanopoulos, Gregory N.; Aristos A. Aristidou and Jens Nielsen, "Metabolic Engineering: Principles and Methodologies," Academic Press, San Diego, 1998. Call no. TP248.3.S74 1998

Truskey, George A., Fan Yuan and David F. Katz, "Transport Phenomena in Biological Systems," Pearson Prentice Hall, New Jersey, 2004. Call no. QH509.T78 2004

Voet, Donald, Judith G. Voet and Charlotte W. Pratt, "Fundamentals of Biochemistry – Upgrade edition," John Wiley & Sons, Inc., New York, 2002. Call no. QD415.V63 2002

Waite, Gabi Nindl and Lee R. Waite, editors, "Applied Cell and Molecular Biology for Engineers," McGraw-Hill publisher, 2007, available online from Marriott Library